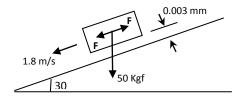
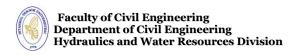


Newton's elemental law of shear stress - concepts of pressure


Question 1: Calculate the ratio of change in the volume of water using E_{water} =19.62x10⁴ N/cm² and Δp =100 atm and explain if the water could be considered as incompressible or not depending on your result. (E = Volumetric Elasticity Modulus)

Question 2: There is a 1.5 cm/s speed difference between two layers of a fluid, where the spacing between the two layers is 1 mm. The fluid is water and its kinematic viscosity is $v_{\text{water}} = 1.10^{-6} \text{ m}^2/\text{ s}$. Find the shear stress between the two layers in SI Unit system.

Answer: τ_{SI} =0.015 N/m²

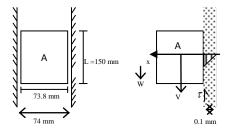

Question 3: At an unloading station, blocks weighing G=490.5 N are released from a smooth surface at an angle of 30° with a horizontal surface. Surface area of the blocks is A=0.2 m². The surface is greased with a pellicle having a thickness of 0.003 mm in order to get the blocks sliding with a constant downward speed of U=1.8 m/s. Find the velocity profile and dynamic viscosity of the pellicle (Thin oil layer between the block and the surface). **Answer: 2.04x10**⁻³ **Ns/m²**

Question 4: In a flowing fluid having a specific weight 0.8 t (ton-force), the speeds of the layers that have 1 cm spacing between them are U_1 =2 cm/s ve U_2 =3 cm/s, respectively. Find the shear stress in this region in terms of N/m². (γ_{oil} =0.8 t/ m³; υ_{oil} =1·10⁻⁴ m²/s) **Answer**: τ_{SI} =8x10⁻²N/m²

Question 5: Given the absolute vapor pressure in a certain temperature of water is $p_{water,ab}$ =0.23 t/ m², find the gage value of this pressure in terms of N/cm². (p_{atm} =9.81 N/cm²) **Answer:** P_{gage} =-9.58 N/cm²

Question 6: Assuming that the specific weight of the sea water is 1.02 t/m³, find the absolute and gage pressure values at depth z=1000 m in terms of N/cm². (p_{atm} = 9.81 N/cm²) **Answer:** P_{gage} = 1000.62 N/cm², $P_{absolute}$ = 1010.43 N/cm²

Newton's elemental law of shear stress - concepts of pressure


Question 7: A diver is working in water at 25 m depth. How large is the pressure at this depth relative to the pressure at the surface of the water? (γ_{sea} =10055.25 N /m³) Answer: $P_{25 \ gage}$ = 25.625 t/m², $P_{25 \ absolute}$ = 35.625 t/m²

Question 8: A barometer reads h_1 =74 cm at the foot of a mountain and it reads h_2 =59 cm (mercury column) at the mountain peak. Find the height of the mountain.

Answer: h_{mountain}= 1606 m

Question 9: A cylinder with a mass m=1.962 N s²/m is sliding downwards through a vertically positioned pipe. A thin oil layer exists between the cylinder and the pipe's internal surface. Axes of the cylinder and pipe overlap. ($\gamma_{oil} = 8044.2 \text{ N/m}^3$; $\nu_{oil} = 6 \cdot 10^{-6} \text{ m}^2/\text{s}$)

- a) Find the change in the speed of the cylinder in the pipe with respect to its unit displacement and the shear stress that acts upon the oil layer.
- b) Find out the cylinder's terminal velocity inside the pipe. (Air pressure effect is neglected.)

