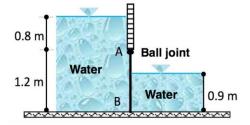
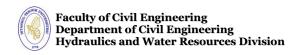


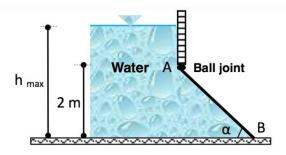
Question 1: Find the horizontal and vertical forces acting below the point shown in the figure that the gate is hinged. (Width perpendicular to the figure plane is 1m).


Question 2: Schematize the horizontal and vertical pressure forces acting on the surfaces ABCD. (Width perpendicular to the figure plane is 1m).



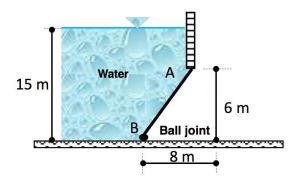
Question 3: The width of the gate AB that is hinged at point A is 2 meters and the gate is a part of the wall separating the chamber into two parts.

- a) Find the direction and the magnitude of the force that should be applied to point B to hold the gate in position if there is water inside the parts and
- b) Find the direction and the magnitude of the force that should be applied to point B to hold the gate in position if there is oil inside the parts knowing that $\gamma_{oil} = 7.85 \text{ kN/m}^3$.


Answer: F_{water} =12.85 kN, F_{oil} =10.28 kN

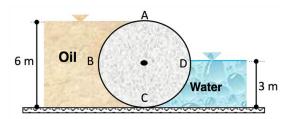
Question 4: The width of the rectangular gate AB gate in the figure that is hinged at point A is 4m, and it's weight is 392.4 kN. What should be the depth (h) of the water on the right side of the chamber to hold the gate in position?

Answer: h_{max}=5.5 m

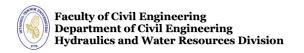

Question 5: For the square gate system in the drawing find:

- a- Pressure force acting upon the gate and the application point,
- b- Reaction force at points A and B.

(The width of the gate perpendicular to the figure plane is 5 m. The contact force at point A is polished).

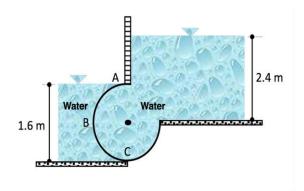

Answer:

- a) F_{water}=5886 kN, application point B, 4.58 m
- b- H_A =4495.92 kN H_B =-212.88 kN, V_B =3531.60 kN

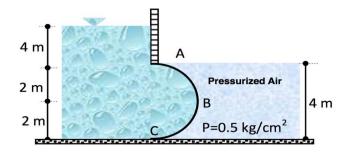


Question 6: Taking the width of the cylindrical gate perpendicular to figure plane as 1 m, find the horizontal and vertical components of the force and magnitude of the resultant force acting upon the gate and the coordinates of application point with respect to point A.

$$(\gamma_{oil} = 7.85kN/m^3)$$

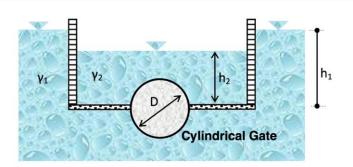


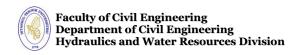
Answer: R= 204.83 kN (Resultant force)

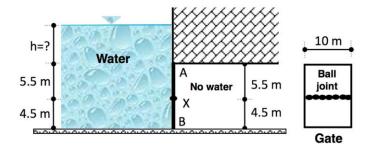


Question 7: Find the horizontal and vertical components of the force acting upon the curvilinear surface ABCD shown on the figure. (Width perpendicular to the figure plane is 3 m).

Answer: $F_{horizontal} = 37.08 \text{ kN}, F_{vertical} = 67.59 \text{ kN}$




Question 8: The width of the semi – cylindrical gate ABC (perpendicular to the figure plane) shown in the figure is 5 m. One side of the gate is pressurized air. Find the horizontal and vertical components of the force acting upon the gate. Answer: Fhorizontal=195.20 kN, Fvertical=308.23 kN


Question 9: Find the pressure force acting on the cylindrical gate for the given chamber system. For the state of equilibrium, calculate the height h_2 in terms of the other parameters.

$$h_2 = h_1 \left(\frac{\gamma_1}{\gamma_2}\right) + \left(\frac{\pi \cdot d}{8}\right) x \left(1 + \frac{\gamma_1}{\gamma_2}\right)$$

Question 10: What should be the depth of the water so that the square designed butterfly damper could be opened. **Answer:** h≤11.66 m (condition to stay closed)

